

LA-UR-19-21733

Approved for public release; distribution is unlimited.

w18_plxa Viewgraphs Title:

Author(s):

Hsu, Scott C. Langendorf, Samuel Byvank, Tom Stoltz, Peter H.

Intended for: Report

Issued: 2019-02-27

w18_plxa Viewgraphs

NATIONAL LABORATORY

EST. 1943

w18_plxa Viewgraphs

• Flash results from LA-UR-18-30344 Results presented in conference poster:

T. Byvank, S. Langendorf, S. C. Hsu, P. Tzeferacos, Y. C. F. Thio, Assessment of High-β Magnetized Target Formation and Plasma-Liner Nonuniformities in Plasma-Jet-Driven Magneto-Inertial Fusion using the FLASH Code, 60th Annual Meeting of the American Physical Society Division of Plasma Physics (APS DPP 2018), Poster Session GP11, Portland, OR, November 6, 2018.

Background: Target Formation Quantities of Interest

Plasma Beta,
$$\beta = \sum_{j} n_{j} k T_{j} / (B^{2}/2\mu_{0}) \sim nT/B^{2}$$

- Ratio of thermal pressure to magnetic pressure
- GOAL: want β > 1, thermally/flow-dominated
- → High β limits MHD instabilities

(Ion) Magnetization, $\omega_i \tau_{ii} = \omega_i / v_{ii} \sim BT^{3/2} / n$

- Ratio of ion cyclotron frequency to ion-ion collision frequency
- GOAL: want ωτ >1, magnetized (*despite high-β)
- → High ωτ reduces thermal transport ⊥ to B, enhances confinement time

Lambda Gun,
$$\lambda_{gun} = \mu_0 I/\Psi_{pol} = 2\pi r B_{\theta}/\int_0^R 2\pi r' B_z dr' \sim B_{\theta}/r_{char}B_z$$

• In preliminary studies, we have $B_{\theta MAX} = 0.7$ T and we vary $B_{z0} = 0.004 - 0.4$ T

β > 1, ωτ >1 is an interesting regime: thermally dominated and magnetized

Background: Lambda Gun Parameter

Spheromak

 $\lambda_{gun} > \lambda_{crit}$ $\beta < 1$

Goal for Target

 $\infty > \lambda_{gun} > \lambda_{crit}$ $\beta > 1, \omega \tau > 1$

<u>Unmagnetized</u>

Plasma Jet

λ_{gun} = ∞ β >> 1, ωτ << 1

Optical Emission Image

Hsu 2012 PoP DOI: 10.1063/1.4773320

Red: Plasma

Blue: Outside B

Green: Poloidal B

Yellow: Toroidal B

Wikihelper2134, 2017

Tangled magnetic field

(length scale € >> electron mean free path λ_{mfp,e})

can further reduce electron transport

and increase confinement time

Hsu 2018 JFE, DOI: 10.1007/s10894-018-0168-z

Varying λ_{gun} will scan parameter space to create the $\beta > 1$, $\omega \tau > 1$ plasma

Simulation Setup: Target Formation

- 1) Plasma jets (H, 10 eV, $5*10^{15}$ cm⁻³) launched by $B_{\theta}(r,t) \sim \sin(r)*\sin^2(t)$
- 2) Jets advect $B_{pol}(r,z)$
- 3) Merging jets form magnetized target
- FLASH Simulation: 2D azimuthally symmetric (r-z plane) of 2 colliding jets

Los Alamos National Laboratory

Results: Target Formation — Time Evolution, Single Jet

Results: Target Formation—Time Evolution, Collision

Results: Target Formation – Varying λ_{gun}

Note: here, est. $\lambda_{crit} \sim 3/r_{char} = 0.6 \text{ cm}^{-1}$

Various λ_{gun} values can create the $\beta > 1$, $\omega \tau > 1$ plasma target

Simulation Setup: Liner Nonuniformities

Kim 2013 PoP DOI: 10.1063/1.4789887

2D Discrete Jets

72 cm

2D Uniform Shell

3D Discrete Jets

(60)

15 cm jet length

9.6 cm shell thickness

- Keeping total liner mass constant, 50 km/s (inward), 1.5 eV, 10¹⁷ cm⁻³
- Initial target: 100 eV, 10^{18} cm⁻³ \rightarrow 3.2*10⁴ bar

Cyan: Chamber vacuum (He), Blue: Liner (Ar), Red: Target (H)

Results: Liner Nonuniformities— Shocks

Merging of discrete jets creates shock structures. Question is: to what extent do these nonuniformities degrade the target compression?

Results: Liner Nonuniformities—Target Compression

Want small liner thickness so it acts like a piston to compress the target.

USim studies of 2D MHD target compressions

Task 4.2.5: 2D PJMIF simulations

- We have the first simulations with axial magnetic field, consistent with (for example) embedding the target in a solenoidal field

USim studies of 2D MHD target compressions

Task 4.2.5: 2D PJMIF simulations

- LANL supercomputing resources allowed us to run with sub-mm grid resolution with less than 30 min turnaround time